Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract An important open problem in supersingular isogeny-based cryptography is to produce, without a trusted authority, concrete examples of ‘hard supersingular curves’ that is equations for supersingular curves for which computing the endomorphism ring is as difficult as it is for random supersingular curves. A related open problem is to produce a hash function to the vertices of the supersingular $$\ell $$-isogeny graph, which does not reveal the endomorphism ring, or a path to a curve of known endomorphism ring. Such a hash function would open up interesting cryptographic applications. In this paper, we document a number of (thus far) failed attempts to solve this problem, in the hope that we may spur further research, and shed light on the challenges and obstacles to this endeavour. The mathematical approaches contained in this article include: (i) iterative root-finding for the supersingular polynomial; (ii) gcd’s of specialized modular polynomials; (iii) using division polynomials to create small systems of equations; (iv) taking random walks in the isogeny graph of abelian surfaces, and applying Kummer surfaces and (v) using quantum random walks.more » « less
-
null (Ed.)Abstract We study the inverse Jacobian problem for the case of Picard curves over $${\mathbb {C}}$$ C . More precisely, we elaborate on an algorithm that, given a small period matrix $$\varOmega \in {\mathbb {C}}^{3\times 3}$$ Ω ∈ C 3 × 3 corresponding to a principally polarized abelian threefold equipped with an automorphism of order 3, returns a Legendre–Rosenhain equation for a Picard curve with Jacobian isomorphic to the given abelian variety. Our method corrects a formula obtained by Koike–Weng (Math Comput 74(249):499–518, 2005) which is based on a theorem of Siegel. As a result, we apply the algorithm to obtain equations of all the isomorphism classes of Picard curves with maximal complex multiplication by the maximal order of the sextic CM-fields with class number at most $$4$$ 4 . In particular, we obtain the complete list of maximal CM Picard curves defined over $${\mathbb {Q}}$$ Q . In the appendix, Vincent gives a correction to the generalization of Takase’s formula for the inverse Jacobian problem for hyperelliptic curves given in [Balakrishnan–Ionica–Lauter–Vincent, LMS J. Comput. Math., 19(suppl. A):283-300, 2016].more » « less
An official website of the United States government
